Compressional Alfvén Wave

Allowing compressibility would give us, $\vec{p} \cdot \vec{u} \neq 0$

So, we need a equ. of state of the form p = p(p)

For iso thermal motion:

$$p = n KT = \int \frac{KT}{M}$$
NOTE: We can also have
adiabatic system.
LINEARIZED EQUATIONS

$$i) = \frac{2}{2t} \vec{E}_1 = \vec{\nabla} \times (\vec{u}_1 \times \vec{E}_0)$$
Note: Introduce the
first order perturbed quantities
to the compressible MHD
 $\vec{P} = \frac{2}{2t} \int_1^2 + \vec{\nabla} \cdot (\vec{u}_1 f_0) = 0$
 $\vec{P} = \frac{2}{2t} \int_1^2 + f_0 \vec{\nabla} \cdot \vec{u}_1 = 0$
Note: Introduce the
first order perturbed quantities
to the compressible MHD
equations and linearize.
 $\vec{P} = \frac{KT}{M} f_1$
Assuming PLANE WAVE Solution $e^{-i}(\omega t - \vec{k} \cdot \vec{r})$
 $\frac{2}{2t} \rightarrow -i\omega \quad \vec{\nabla} \rightarrow i\vec{k}$
Substituting operators,
 $i = i \vec{k} \times (\vec{u}_1 \times \vec{E}_0) = i (\vec{k} \cdot \vec{E}_0) \vec{u}_1 - i (\vec{k} \cdot \vec{u}_1) \vec{E}_0$
 $\vec{r} = -i\omega \quad \vec{k} \cdot \vec{u}_1 = 0$
Note: Remember in
case of incompressible
fluids, density is constant but

not here.

3)
$$-i \omega_{f_0} \vec{u}_1 = -i \vec{k} \vec{p}_1 + \frac{i}{M_0} (\vec{k} \times \vec{k}_1) \times \vec{k}_0$$

=) $-i \omega_{f_0} \vec{u}_1 = -i \vec{k} \vec{p}_1 - \frac{i}{M_0} [(\vec{k}_0 \cdot \vec{k}_1) \vec{k} - (\vec{k} \cdot \vec{k}_0) \vec{k}_1]$
=) $f_0 \omega \vec{u}_1 = \vec{k} \vec{p}_1 + \frac{1}{M_0} [(\vec{k}_0 \cdot \vec{k}_1) \vec{k} - (\vec{k} \cdot \vec{k}_0) \vec{k}_1]$
(1) $\vec{p}_1 = \frac{KT}{M} f_1$
(2) $\vec{k}_1 \perp \vec{k}$
(2) $\vec{k}_1 \perp \vec{k}$
(2) $\vec{k}_1 \perp \vec{k}$
(3) $\vec{k}_1 \perp \vec{k}$
(4) $\vec{k}_1 \perp \vec{k}$
(5) $\vec{k}_1 \perp \vec{k}$
(5) $\vec{k}_1 \perp \vec{k}$
(6) $\vec{k}_1 \perp \vec{k}$
(7) $\vec{k}_1 \perp \vec{k}$
(8) $\vec{k}_1 \perp \vec{k}$
(9) $\vec{k}_1 \perp \vec{k}$
(9) $\vec{k}_1 \perp \vec{k}$
(1) $\vec{k}_1 = \omega_{f_1/f_0}$
(1) \vec{k}_1 not orthogonal any more $\vec{k} \neq \vec{u}_1$
instead it will depend on fluctuations in mass density.

Now, let's use these equations and find out the dispersion relations for different cases.

For limiting case,
$$T = 0$$

Using equ. of state,
 $\not \Rightarrow = 0$
 $\int_{1}^{1} = 0$ can be neglected

Then, we end up with dispersion relation,

$$\left(\frac{\omega^{4}}{\kappa^{4}}-\frac{\omega^{2}}{\kappa^{2}}V_{A}^{2}\right)\left(\frac{\omega^{2}}{\kappa^{2}}-V_{A}^{2}\cos^{2}\theta\right)=0$$

Sound wave MAGNETOSONIC WAVE

Alfve'n wave

Polar diagram
polar diagram
for phase velocity
Alfvén modes

$$L_{L}$$

Magnetosonic modes
 $M_{L} = \pm V_{A}$
 V_{A}
 $L_{C} = E_{0} \pm V_{A}$
Not E: The magnetosonic
wave is isotropic and has
the same phase velocity with Alfvet

General Case

We allow temperature (i.e.
$$T \neq 0$$
)
The modified dispersion equation will be the following,

$$\begin{pmatrix}
\omega^{4} & -\frac{\omega^{2}}{\kappa^{2}} (\alpha^{2} + V_{A}^{2}) + C_{S}^{2} V_{A}^{2} C_{O} \langle O \rangle \\
\frac{\omega^{2}}{\kappa^{2}} - V_{A}^{2} C_{O} \langle O \rangle \\
MAGNETOSONIC WAVE \\
Where, $C_{S} = \sqrt{\frac{KT}{M}}$
For Magneto souic mode,

$$\frac{\omega^{2}}{\kappa^{2}} = \frac{1}{2} (C_{S}^{2} + V_{A}^{2}) \pm \frac{1}{2} \sqrt{(C_{S}^{2} + V_{A}^{2}) - 4C_{S}^{2} V_{A}^{2} C_{O}^{2} O}$$
If the magneto souic mode propagates along \vec{B}_{o}
i.e. $O = O$

$$\frac{\omega^{2}}{\kappa^{2}} = C_{S}^{2} \text{ and } \frac{\omega^{2}}{\kappa^{2}} = V_{A}^{2}$$
Sound WAVE $AIFVE'_{N} WAVE$$$

FAST MODE

7 JCY YNA Fast CS TVA high (3 mode low B Slow mode ≻ -<u>(</u> ۷ ۯڔ -V4 $c_{s}^{\sim} \ll V_{A}^{\sim}$ $(c >> V_A$ KIIBO is degenerate (:" disterion (" unver some somewhen) K IIBo is degenerate Polar diagram for phase velocity If we compare three different polar diagrams for phase velocities, we can see the slow mode starts to shrink as we decrease C_s . For the cold case (i.e. $C_s = 0$) it shrinks to a point. For low β , fast wave mode and Alfre's wave merge ($\theta = 0$) and for high B, slow wave mode and Alfre'n wave merge. Sheared Alfre'n wave remains incompressible IMPORTANT: (can be derived taking a scalar product with K of 3) If the angle of propagation is fixed, the phase velocity stays the same. Magnetosonic wave will propagate I to the magnetic field. All the waves can be damped with finite resistivity.