Compressional Alfvén Wave

Allowing compressibility would give us, $\vec{v} \cdot \vec{u} \neq 0$

 s , we need a equ. of state of the form $p = p(p)$

For *iso thermal motion*:\n
$$
p = n \times T = \int \frac{KT}{M}
$$
\n
\nLINEARIZED EQUATIONS\n
$$
\frac{\partial}{\partial t} \vec{B}_1 = \vec{U} \times (\vec{u_1} \times \vec{B}_0)
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 = \vec{U} \times (\vec{u_1} \times \vec{B}_0)
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 + \vec{U} \cdot (\vec{u_1} \vec{B}_0) = 0
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 + \vec{U} \cdot (\vec{u_1} \vec{B}_0) = 0
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 + \vec{U} \cdot (\vec{u_1} \vec{B}_0) = 0
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 + \vec{U} \cdot (\vec{u_1} \vec{B}_0) = 0
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 = -\vec{V} \vec{B}_1 + \frac{1}{M_0} [\vec{V} \times \vec{B}_1] \times \vec{B}_0
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 = -\vec{V} \vec{B}_1 + \frac{1}{M_0} [\vec{V} \times \vec{B}_1] \times \vec{B}_0
$$
\n
$$
\frac{\partial}{\partial t} \vec{B}_1 \rightarrow -i\omega \quad \vec{V} \rightarrow i\vec{K}
$$
\nSubstituting *PLANE WAVE Solution*
$$
\frac{\partial}{\partial t} \vec{B}_1 = -i\vec{K} \times (\vec{U_1} \times \vec{B}_0) = i(\vec{K} \cdot \vec{B}_0) \vec{U_1} - i(\vec{K} \cdot \vec{U_1}) \vec{B}_0
$$
\n
$$
\frac{\text{Note: Remember in } \text{base of incompressible}}{\text{fluids, density is constant but}}
$$

not here.

3) $-i \omega \zeta_0 \vec{u}_1 = -i \vec{k} \zeta_1 + \frac{i}{\lambda_0} (\vec{k} \times \vec{B}_1) \times \vec{B}_0$
= $-i \omega \zeta_0 \vec{u}_1 = -i \vec{k} \zeta_1 - \frac{i}{\lambda_0} [(\vec{B}_0 \cdot \vec{B}_1) \vec{k} - (\vec{k} \cdot \vec{B}_0) \vec{B}_1]$
= $\beta_0 \omega \vec{u}_1 = \vec{k} \zeta_1 + \frac{1}{\lambda_0} [(\vec{B}_0 \cdot \vec{B}_1) \vec{k} - (\vec{k} \cdot \vec{B}_0) \vec{B}_1]$
4) $\beta_1 = \frac{kT}{M} \zeta_1$
4) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
4) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
4) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
4) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
4) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
4) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
5) $\zeta_1 = \frac{kT}{M} \zeta_1$
6) $\frac{1}{K} \zeta_1 = \frac{kT}{M} \zeta_1$
7) ζ

Now, let's use these equations and find out the dispersion relations for different cases.

For limiting case,
$$
T=0
$$

Using equ. of she.
 $p \rightarrow \infty$
 $\int_{1}^{p} \rightarrow$ can be neglected

Then, we end up with dispersion relation,

Sound wave Alfve'n wave MAGNETOSONIC WAVE

> Question: Why do we have sound wave even if we do not have pressure?

It comes from Magnetic pressure

General cace

We allow temperature (i.e.
$$
T \neq 0
$$
)
\nThe modified dispersion equation will be the following,
\n
$$
\left(\frac{\omega^4}{k^4} - \frac{\omega^2}{k^2} (c_s^2 + v_k^2) + c_s^2 v_k^2 c_0^2 \omega\right) \left(\frac{\omega^2}{k^2} - v_k^2 c_0^2 \omega\right) = 0
$$
\nMAGNETOSONIC WAVE
\nwhere, $C_S = \sqrt{\frac{kT}{M}}$
\nFor Magnetic whole,
\n
$$
\frac{\omega^2}{k^2} = \frac{1}{2} (c_s^2 + v_k^2) \pm \frac{1}{2} (c_s^2 + v_k^2) - 4 c_s^2 v_k^2 c_0^2 \omega
$$
\nIf the magnetic force model propagates along \vec{B} ,
\ni.e. $\omega = 0$
\n
$$
\frac{\omega^2}{k^2} = c_s^2 \omega
$$
 and $\frac{\omega^2}{k^2} = v_k^2$
\nSownD WAVE
\n
$$
\frac{\omega^2}{k^2} = Q^2 + v_k^2
$$

FAST MODE

 h \overline{v} a \overline{v} \overline{v} $\overline{Cs^2+v^2}$ Fast low B Slow r_A and r_A and r_A c_{c} $\bigcup_{\alpha} \bigcup_{\beta} \bigcup_{\beta}$ C_5 $\times V_A$ R ll Bo merate Dolar Rues
is degenerate **Polar diagram for phase velocity**If we compare three different polar diagrams for phase velocities, we can see the slow mode starts to shrink as we decrease C_S . For the cold case (i.e. C_S = 0) it shrinks to a point. For low β , fast wave mode and Alfre's wave merge ($\theta = 0$) and for high B, slow wave mode and Alfre'n wave merge. IMPORTANT: Sheared Alfve'n wave remains incompressible even when we allowed compressibility can be derived taking a scalar product with K of If the angle of propagation is fixed, the phase velocity stays the same Magnetosonic wave willpropagate 1 to the magnetic field. All the waves can be damped with finite resistivity.